Network traffic classification via HMM under the guidance of syntactic structure

نویسندگان

  • ChengGuo Yin
  • ShuangQing Li
  • Qi Li
چکیده

Network traffic classification is the basis of many network technologies including intrusion detection, traffic scheduling, and quality of service. Given the limitations of existing classification approaches based on the port number, the packet-payload and statistical characteristics of network traffic, in this paper we propose a novel classification method via a hidden Markov model. With the analysis about the time series characteristics and statistical properties of network traffic, we use a hidden Markov model to model for a type of traffic under the guidance of syntactic structure of it. And then a classification approach is presented based on the model. Experiment results on several typical network applications indicate that the combination of time series characteristics and the statistical properties not only make the established model more precise, but also improve the accuracy of network traffic classification. 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reverse Engineering of Network Software Binary Codes for Identification of Syntax and Semantics of Protocol Messages

Reverse engineering of network applications especially from the security point of view is of high importance and interest. Many network applications use proprietary protocols which specifications are not publicly available. Reverse engineering of such applications could provide us with vital information to understand their embedded unknown protocols. This could facilitate many tasks including d...

متن کامل

Feature Extraction to Identify Network Traffic with Considering Packet Loss Effects

There are huge petitions of network traffic coming from various applications on Internet. In dealing with this volume of network traffic, network management plays a crucial rule. Traffic classification is a basic technique which is used by Internet service providers (ISP) to manage network resources and to guarantee Internet security. In addition, growing bandwidth usage, at one hand, and limit...

متن کامل

User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm

Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...

متن کامل

Classification of encrypted traffic for applications based on statistical features

Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...

متن کامل

Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification

Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Networks

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012